• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks.

Neuroimaging studies have suggested the involvement of ventrolateral, dorsolateral, and frontopolar prefrontal cortex (PFC) regions in both working (WM) and long-term memory (LTM). The current study used functional magnetic resonance imaging (fMRI) to directly compare whether these PFC regions show selective activation associated with one memory domain. In a within-subjects design, subjects performed the n-back WM task (two-back condition) as well as LTM encoding (intentional memorization) and retrieval (yes-no recognition) tasks. Additionally, each task was performed with two different types of stimulus materials (familiar words, unfamiliar faces) in order to determine the influence of material-type vs task-type. A bilateral region of dorsolateral PFC (DL-PFC; BA 46/9) was found to be selectively activated during the two-back condition, consistent with a hypothesized role for this region in active maintenance and/or manipulation of information in WM. Left frontopolar PFC (FP-PFC) was also found to be selectively engaged during the two-back. Although FP-PFC activity has been previously associated with retrieval from LTM, no frontopolar regions were found to be selectively engaged by retrieval. Finally, lateralized ventrolateral PFC (VL-PFC) regions were found to be selectively engaged by material-type, but uninfluenced by task-type. These results highlight the importance of examining PFC activity across multiple memory domains, both for functionally differentiating PFC regions (e.g., task-selectivity vs material-selectivity in DL-PFC and VL-PFC) and for testing the applicability of memory domain-specific theories (e.g., FP-PFC in LTM retrieval).

Pubmed ID: 11525336