Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Molecular properties and physiological roles of ion channels in the immune system.

The discovery of a diverse and unique set of ion channels in T lymphocytes has led to a rapidly growing body of knowledge about their functional roles in the immune system. Here we review the biophysical and molecular characterization of K+, Ca2+, and Cl- channels in T lymphocytes. Potent and specific blockers, especially of K+ channels, have provided molecular tools to elucidate the involvement of voltage- and calcium-activated potassium channels in T-cell activation and cell-volume regulation. Their unique and differential expression makes lymphocyte K+ channels excellent pharmaceutical targets for modulating immune system function. This review surveys recent progress at the biophysical, molecular, and functional roles of the ion channels found in T lymphocytes.

Pubmed ID: 11506193 RIS Download

Mesh terms: Amino Acid Sequence | Animals | Biophysical Phenomena | Biophysics | Calcium Signaling | Electrophysiology | Female | Humans | Ion Channels | Maternal-Fetal Exchange | Models, Biological | Molecular Sequence Data | Potassium Channels | Pregnancy | Signal Transduction | T-Lymphocytes

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.