We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein.

The cerebellar Purkinje cell has been the focus of numerous studies involving the analysis of development and information processing in the nervous system. Purkinje cells represent less than 0.1% of the total cell content of the cerebellum. To facilitate studies of molecules that are expressed in such a small proportion of neurons, we have established procedures for the purification of these cells. Transgenic mice were developed in which the expression of green fluorescent protein (GFP) was controlled by the L7 promoter. In adult cerebellum, GFP fluorescence was only detected in Purkinje cells, where it filled dendrites, soma and axons. GFP fluorescence was detected in Purkinje cells as early as embryonic day 17 and increased during development in vivo and in dissociated cerebellar culture. Mirroring endogenous L7 expression, high levels of GFP were observed in retinal rod bipolar cells. Lower levels of GFP were seen in olfactory periglomerular cells, neurons in the interpeduncular nucleus, and superior colliculus neurons. Cerebella from transgenic mice were dissociated by mild enzymatic treatment and Purkinje cells were isolated by fluorescence-activated cell sorting (FACS). By selecting optimal parameters, a fraction of viable Purkinje cells that was 94% pure was obtained. These results indicate that FACS is a powerful tool for isolating Purkinje cells from postnatal L7-GFP transgenic mice. GFP-positive neurons will also be useful in the real-time observation of dendritic morphogenesis and axonal outgrowth during development, or after neuronal activity in vitro.

Pubmed ID: 11488949 RIS Download

Mesh terms: Animals | Cell Culture Techniques | Cells, Cultured | Flow Cytometry | Green Fluorescent Proteins | Indicators and Reagents | Luminescent Proteins | Mice | Mice, Transgenic | Nerve Tissue Proteins | Olfactory Bulb | Promoter Regions, Genetic | Purkinje Cells | Retina | Transcription, Genetic

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, Id: CA21765
  • Agency: NEI NIH HHS, Id: EY06972
  • Agency: NINDS NIH HHS, Id: NS36925

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.