We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Interaction of Knr4 protein, a protein involved in cell wall synthesis, with tyrosine tRNA synthetase encoded by TYS1 in Saccharomyces cerevisiae.

FEMS microbiology letters | Jun 12, 2001

The Knr4 protein, known to be involved in the regulation of cell wall assembly in Saccharomyces cerevisiae, strongly interacts with the tyrosine tRNA synthetase protein encoded by TYS1 as demonstrated by the genetic two-hybrid system and a biochemical pull-down experiment using GST--Tys1p fusion. Data reported here raise the possibility that this physical interaction between these proteins is required for dityrosine formation during the sporulation process. In addition, it is shown that the efficiency of spores formation was drastically reduced in diploid cells homozygous for the disruption of KNR4 or for a temperature-sensitive mutation of TYS1, although this effect could be independent of their protein interaction. Altogether, these data provide novel functions of Knr4p and Tys1p to those that were known before.

Pubmed ID: 11410349 RIS Download

Mesh terms: Cell Wall | Fungal Proteins | Protein Binding | Saccharomyces cerevisiae | Saccharomyces cerevisiae Proteins | Spores, Fungal | Transcription Factors | Two-Hybrid System Techniques | Tyrosine | Tyrosine-tRNA Ligase

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants


Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.