• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality.

In budding yeast, MEC1 and RAD53 are essential for cell growth. Previously we reported that mec1 or rad53 lethality is suppressed by removal of Sml1, a protein that binds to the large subunit of ribonucleotide reductase (Rnr1) and inhibits RNR activity. To understand further the relationship between this suppression and the Sml1-Rnr1 interaction, we randomly mutagenized the SML1 open reading frame. Seven mutations were identified that did not affect protein expression levels but relieved mec1 and rad53 inviability. Interestingly, all seven mutations abolish the Sml1 interaction with Rnr1, suggesting that this interaction causes the lethality observed in mec1 and rad53 strains. The mutant residues all cluster within the 33 C-terminal amino acids of the 104-amino-acid-long Sml1 protein. Four of these residues reside within an alpha-helical structure that was revealed by nuclear magnetic resonance studies. Moreover, deletions encompassing the N-terminal half of Sml1 do not interfere with its RNR inhibitory activity. Finally, the seven sml1 mutations also disrupt the interaction with yeast Rnr3 and human R1, suggesting a conserved binding mechanism between Sml1 and the large subunit of RNR from different species.

Pubmed ID: 11074005

Authors

  • Zhao X
  • Georgieva B
  • Chabes A
  • Domkin V
  • Ippel JH
  • Schleucher J
  • Wijmenga S
  • Thelander L
  • Rothstein R

Journal

Molecular and cellular biology

Publication Data

December 19, 2000

Associated Grants

  • Agency: NIGMS NIH HHS, Id: GM50237
  • Agency: NIGMS NIH HHS, Id: R01 GM080670

Mesh Terms

  • Cell Cycle Proteins
  • Checkpoint Kinase 2
  • Chromosomes, Fungal
  • DNA Mutational Analysis
  • Enzyme Inhibitors
  • Fungal Proteins
  • Humans
  • Intracellular Signaling Peptides and Proteins
  • Mutation, Missense
  • Protein Binding
  • Protein Kinases
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Protein-Serine-Threonine Kinases
  • Ribonucleotide Reductases
  • Saccharomyces cerevisiae Proteins
  • Solutions
  • Species Specificity
  • Suppression, Genetic
  • Two-Hybrid System Techniques