Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity.

Cell | Sep 29, 2000

http://www.ncbi.nlm.nih.gov/pubmed/11051556

The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes a chloride channel protein that belongs to the superfamily of ATP binding cassette (ABC) transporters. Phosphorylation by protein kinase A in the presence of ATP activates the CFTR-mediated chloride conductance of the apical membranes. We have identified a novel hydrophilic CFTR binding protein, CAP70, which is also concentrated on the apical surfaces. CAP70 consists of four PDZ domains, three of which are capable of binding to the CFTR C terminus. Linking at least two CFTR molecules via cytoplasmic C-terminal binding by either multivalent CAP70 or a bivalent monoclonal antibody potentiates the CFTR chloride channel activity. Thus, the CFTR channel can be switched to a more active conducting state via a modification of intermolecular CFTR-CFTR contact that is enhanced by an accessory protein.

Pubmed ID: 11051556 RIS Download

Mesh terms: Amino Acid Sequence | Animals | Carrier Proteins | Cell Extracts | Cell Membrane | Cystic Fibrosis Transmembrane Conductance Regulator | Intestine, Small | Kidney | Membrane Proteins | Mice | Models, Biological | Molecular Sequence Data | Protein Structure, Tertiary

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.