• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Genetic analysis of melanophore development in zebrafish embryos.

Vertebrate pigment cells are derived from neural crest, a tissue that also forms most of the peripheral nervous system and a variety of ectomesenchymal cell types. Formation of pigment cells from multipotential neural crest cells involves a number of common developmental processes. Pigment cells must be specified; their migration, proliferation, and survival must be controlled and they must differentiate to the final pigment cell type. We previously reported a large set of embryonic mutations that affect pigment cell development from neural crest (R. N. Kelsh et al., 1996, Development 123, 369-389). Based on distinctions in pigment cell appearance between mutants, we proposed hypotheses as to the process of pigment cell development affected by each mutation. Here we describe the cloning and expression of an early zebrafish melanoblast marker, dopachrome tautomerase. We used this marker to test predictions about melanoblast number and pattern in mutant embryos, including embryos homozygous for mutations in the colourless, sparse, touchdown, sunbleached, punkt, blurred, fade out, weiss, sandy, and albino genes. We showed that in homozygous mutants for all loci except colourless and sparse, melanoblast number and pattern are normal. colourless mutants have a pronounced decrease in melanoblast cell number from the earliest stages and also show poor melanoblast differentiation and migration. Although sparse mutants show normal numbers of melanoblasts initially, their number is reduced later. Furthermore, their distribution indicates a defect in melanoblast dispersal. These observations permit us to refine our model of the genetic control of melanophore development in zebrafish embryos.

Pubmed ID: 10985850


  • Kelsh RN
  • Schmid B
  • Eisen JS


Developmental biology

Publication Data

September 15, 2000

Associated Grants

  • Agency: NICHD NIH HHS, Id: HD22486

Mesh Terms

  • Amino Acid Sequence
  • Animals
  • Body Patterning
  • Cloning, Molecular
  • Embryo, Nonmammalian
  • Gene Expression Regulation, Developmental
  • Gene Expression Regulation, Enzymologic
  • Humans
  • Intramolecular Oxidoreductases
  • Melanophores
  • Molecular Sequence Data
  • Neural Crest
  • Recombinant Proteins
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Zebrafish