Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

homothorax and iroquois-C genes are required for the establishment of territories within the developing eye disc.

Mechanisms of development | 2000

In Drosophila the eye-antennal disc gives rise to most adult structures of the fly's head. Yet the molecular basis for its regionalization during development is poorly understood. Here we show that homothorax is required early during development for normal eye development and is necessary for the formation of the ventral head capsule. In the ventral region of the disc only, homothorax and wingless are involved in a positive feedback loop necessary to restrict eye formation. homothorax is able to prevent the initiation and progression of the morphogenetic furrow without inducing wingless, which points to homothorax as a key negative regulator of eye development. In addition, we show that the iroquois-complex genes are required for dorsal head development antagonizing the function of homothorax in this region of the disc.

Pubmed ID: 10940621 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM58575-01
  • Agency: NEI NIH HHS, United States
    Id: R0I EY13012-01

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Brainbow mouse resource at Jackson Labs (tool)

RRID:SCR_004894

These Brainbow 1.0 (founder line L) mice allow labeling of individual neuronal types (specifically hippocampal neuron cell bodies, and including motor neurons, dentate gyrus granule cells, pyramidal neurons of the cortex and CA1 area) with approximately 166 distinguishable color variations in cre recombined cells, and may also be useful in conjunction with other Brainbow strains (Stock No. 007901, Stock No. 007911, Stock No. 007921) for neurobiological studies. These Thy1-Brainbow 1.0 (line L) transgenic mice are viable and fertile. The mice possess multiple fluorescent protein sequences uniquely flanked with pairs of incompatible Lox sites alternated to create mutually exclusive recombination events; allowing stochastic expression of multiple fluorescent proteins from a single transgene. Prior to Cre-mediated recombination, the fluorescent protein immediately adjacent to the promoter, dTomato (RFP), is expressed in peripheral and central neurons. When bred to Cre recombinase expressing mice, the resulting offspring can have one of three expression outcomes for each transgene in each cell of the cre expressing tissue(s): dTomato (RFP) (no recombination), mCerulean (CFP), or mYFP. Integration of tandem transgene copies yields combinatorial fluorescent protein expression in each cell, and thus many possible cell colors, providing a way to distinguish adjacent neurons and visualize other cellular interactions. Of note, the single FRT site inserted in the transgene allows tandem transgene copy number reduction through Flp-mediated recombination if desired. These Brainbow 1.0 (founder line L) mice were found to have multiple transgene copies that allow labeling of individual neuronal types (specifically hippocampal neuron cell bodies, and including motor neurons, dentate gyrus granule cells, pyramidal neurons of the cortex and CA1 area) with approximately 166 distinguishable color variations in cre recombined cells, and may also be useful in conjunction with other Brainbow strains (Stock No. 007901, Stock No. 007911, Stock No. 007921) for neurobiological studies. This mouse can be used to support research in many areas including:
Neurobiology Research
* Cre-lox System (loxP-flanked Sequences)
* Fluorescent protein expression in neural tissue
Research Tools
* Cre-lox-System (loxP-flanked Sequences: Test/Reporter)
* Developmental Biology Research (Cre-lox system)
* Developmental Biology Research (transplantation marker for embryonic and adult tissue)
* FLP-FRT System (FRT-flanked Sequences)
* Fluorescent Proteins * Genetics Research (Mutagenesis and Transgenesis: Cre-lox system) * Genetics Research (Tissue/Cell Markers: Cre-lox system) * Genetics Research (Tissue/Cell Markers: astrocyte-specific marker) * Genetics Research (Tissue/Cell Markers: astrocytes) * Genetics Research (Tissue/Cell Markers: astrocytes, neurons) * Genetics Research (Tissue/Cell Markers: glial cells) * Genetics Research (Tissue/Cell Markers: multiple) * Genetics Research (Tissue/Cell Markers: neurons) * Genetics Research (Tissue/Cell Markers: transplantation marker for embryonic and adult tissue) * Neurobiology Research (astrocyte-specific marker) * Neurobiology Research (cell marker) * YFP related Research Tools * Fluorescent Proteins Control: 000664 C57BL/6J (approximate)

View all literature mentions