Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

MesP1 and MesP2 are essential for the development of cardiac mesoderm.

The transcription factors, MesP1 and MesP2, sharing an almost identical bHLH motif, have an overlapping expression pattern during gastrulation and somitogenesis. Inactivation of the Mesp1 gene results in abnormal heart morphogenesis due to defective migration of heart precursor cells, but somitogenesis is not disrupted because of normal expression of the Mesp2 gene. To understand the cooperative functions of MesP1 and MesP2, either a deletion or sequential gene targeting strategy was employed to inactivate both genes. The double-knockout (dKO) embryos died around 9.5 days postcoitum (dpc) without developing any posterior structures such as heart, somites or gut. The major defect in this double-knockout embryo was the apparent lack of any mesodermal layer between the endoderm and ectoderm. The abnormal accumulation of cells in the primitive streak indicates a defect in the migratory activity of mesodermal cells. Molecular markers employed to characterize the phenotype revealed a lack of the cranio-cardiac and paraxial mesoderm. However, the axial mesoderm, as indicated by brachyury (T) expression, was initially generated but anterior extension was halted after 8.5 dpc. Interestingly, a headfold-like structure developed with right anterior-posterior polarity; however, the embryos lacked any posterior neural properties. The persistent and widely distributed expression of Cerberus-like-1(Cer1), Lim1 and Otx2 in the anterior endoderm might be responsible for the maintenance of anterior neural marker expression. We also performed a chimera analysis to further study the functions of MesP1 and MesP2 in the development of mesodermal derivatives. In the chimeric embryos, dKO cells were scarcely observed in the anterior-cephalic and heart mesoderm, but they did contribute to the formation of the somites, notochord and gut. These results strongly indicate that the defect in the cranial-cardiac mesoderm is cell-autonomous, whereas the defect in the paraxial mesoderm is a non-cell-autonomous secondary consequence.

Pubmed ID: 10887078 RIS Download

Mesh terms: Animals | Antigens, Differentiation | Basic Helix-Loop-Helix Transcription Factors | Body Patterning | Cell Line | Chimera | Embryo, Mammalian | Gastrula | Gene Deletion | Heart | Heart Defects, Congenital | Helix-Loop-Helix Motifs | Mesoderm | Mice | Mice, Knockout | Myocardium | Neurons | Transcription Factors

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants


Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.