• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway.

Gastrulation in the amphibian embryo is driven by cells of the mesoderm. One of the genes that confers mesodermal identity in Xenopus is Brachyury (Xbra), which is required for normal gastrulation movements and ultimately for posterior mesoderm and notochord differentiation in the development of all vertebrates. Xbra is a transcription activator, and interference with transcription activation leads to an inhibition of morphogenetic movements during gastrulation. To understand this process, we have screened for downstream target genes of Brachyury (Tada, M., Casey, E., Fairclough, L. and Smith, J. C. (1998) Development 125, 3997-4006). This approach has now allowed us to isolate Xwnt11, whose expression pattern is almost identical to that of Xbra at gastrula and early neurula stages. Activation of Xwnt11 is induced in an immediate-early fashion by Xbra and its expression in vivo is abolished by a dominant-interfering form of Xbra, Xbra-En(R). Overexpression of a dominant-negative form of Xwnt11, like overexpression of Xbra-En(R), inhibits convergent extension movements. This inhibition can be rescued by Dsh, a component of the Wnt signalling pathway and also by a truncated form of Dsh which cannot signal through the canonical Wnt pathway involving GSK-3 and (beta)-catenin. Together, our results suggest that the regulation of morphogenetic movements by Xwnt11 occurs through a pathway similar to that involved in planar polarity signalling in Drosophila.

Pubmed ID: 10769246


  • Tada M
  • Smith JC


Development (Cambridge, England)

Publication Data

May 14, 2000

Associated Grants


Mesh Terms

  • Activins
  • Adaptor Proteins, Signal Transducing
  • Animals
  • Chromosome Mapping
  • Gastrula
  • Glycoproteins
  • Inhibins
  • Morphogenesis
  • Phosphoproteins
  • Signal Transduction
  • T-Box Domain Proteins
  • Wnt Proteins
  • Xenopus
  • Xenopus Proteins