We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta.

Pleiotrophin (PTN) is a platelet-derived growth factor-inducible, 18-kDa heparin-binding cytokine that signals diverse phenotypes in normal and deregulated cellular growth and differentiation. To seek the mechanisms of PTN signaling, we studied the interactions of PTN with the receptor protein tyrosine phosphatase (RPTP) beta/zeta in U373-MG cells. Our results suggest that PTN is a natural ligand for RPTP beta/zeta. PTN signals through "ligand-dependent receptor inactivation" of RPTP beta/zeta and disrupts its normal roles in the regulation of steady-state tyrosine phosphorylation of downstream signaling molecules. We have found that PTN binds to and functionally inactivates the catalytic activity of RPTP beta/zeta. We also have found that an active site-containing domain of RPTP beta/zeta both binds beta-catenin and functionally reduces its levels of tyrosine phosphorylation when added to lysates of pervanidate-treated cells. In contrast, an (inactivating) active-site mutant of RPTP beta/zeta also binds beta-catenin but fails to reduce tyrosine phosphorylation of beta-catenin. Finally, in parallel to its ability to inactivate endogenous RPTP beta/zeta, PTN sharply increases tyrosine phosphorylation of beta-catenin in PTN-treated cells. The results suggest that in unstimulated cells, RPTP beta/zeta is intrinsically active and functions as an important regulator in the reciprocal control of the steady-state tyrosine phosphorylation levels of beta-catenin by tyrosine kinases and phosphatases. The results also suggest that RPTP beta/zeta is a functional receptor for PTN; PTN signals through ligand-dependent receptor inactivation of RPTP beta/zeta to increase levels of tyrosine phosphorylation of beta-catenin to initiate downstream signaling. PTN is the first natural ligand identified for any of the RPTP family; its identification provides a unique tool to pursue the novel signaling pathway activated by PTN and the relationship of PTN signaling with other pathways regulating beta-catenin.

Pubmed ID: 10706604 RIS Download

Mesh terms: Blotting, Western | Carrier Proteins | Cross-Linking Reagents | Cytokines | Cytoskeletal Proteins | Glutathione Transferase | Humans | Immunoglobulin Fragments | Ligands | Nerve Tissue Proteins | Phosphorylation | Protein Binding | Protein Tyrosine Phosphatases | Receptor-Like Protein Tyrosine Phosphatases, Class 5 | Signal Transduction | Time Factors | Trans-Activators | Tumor Cells, Cultured | Tyrosine | beta Catenin

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants


Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.