Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Molecular dissection of zyxin function reveals its involvement in cell motility.

The Journal of cell biology | 1999

Spatially controlled actin filament assembly is critical for numerous processes, including the vectorial cell migration required for wound healing, cell- mediated immunity, and embryogenesis. One protein implicated in the regulation of actin assembly is zyxin, a protein concentrated at sites where the fast growing ends of actin filaments are enriched. To evaluate the role of zyxin in vivo, we developed a specific peptide inhibitor of zyxin function that blocks its interaction with alpha-actinin and displaces it from its normal subcellular location. Mislocalization of zyxin perturbs cell migration and spreading, and affects the behavior of the cell edge, a structure maintained by assembly of actin at sites proximal to the plasma membrane. These results support a role for zyxin in cell motility, and demonstrate that the correct positioning of zyxin within the cell is critical for its physiological function. Interestingly, the mislocalization of zyxin in the peptide-injected cells is accompanied by disturbances in the distribution of Ena/VASP family members, proteins that have a well-established role in promoting actin assembly. In concert with previous work, our findings suggest that zyxin promotes the spatially restricted assembly of protein complexes necessary for cell motility.

Pubmed ID: 10613911 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM050877
  • Agency: NIGMS NIH HHS, United States
    Id: GM50877

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NEURON (tool)

RRID:SCR_005393

NEURON is a simulation environment for modeling individual neurons and networks of neurons. It provides tools for conveniently building, managing, and using models in a way that is numerically sound and computationally efficient. It is particularly well-suited to problems that are closely linked to experimental data, especially those that involve cells with complex anatomical and biophysical properties. NEURON has benefited from judicious revision and selective enhancement, guided by feedback from the growing number of neuroscientists who have used it to incorporate empirically-based modeling into their research strategies. NEURON's computational engine employs special algorithms that achieve high efficiency by exploiting the structure of the equations that describe neuronal properties. It has functions that are tailored for conveniently controlling simulations, and presenting the results of real neurophysiological problems graphically in ways that are quickly and intuitively grasped. Instead of forcing users to reformulate their conceptual models to fit the requirements of a general purpose simulator, NEURON is designed to let them deal directly with familiar neuroscience concepts. Consequently, users can think in terms of the biophysical properties of membrane and cytoplasm, the branched architecture of neurons, and the effects of synaptic communication between cells. * helps users focus on important biological issues rather than purely computational concerns * has a convenient user interface * has a user-extendable library of biophysical mechanisms * has many enhancements for efficient network modeling * offers customizable initialization and simulation flow control * is widely used in neuroscience research by experimentalists and theoreticians * is well-documented and actively supported * is free, open source, and runs on (almost) everything

View all literature mentions

NIH Image (tool)

RRID:SCR_003073

Public image processing and analysis program for Macintosh.

View all literature mentions