We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling.

Presenilin-1 (PS1) facilitates gamma-secretase cleavage of the beta-amyloid precursor protein and the intramembraneous cleavage of Notch1. Although Alzheimer's disease-associated mutations in the homologous presenilin (PS2) gene elevate amyloid beta-peptide (Abeta42) production like PS1 mutations, here we demonstrate that a gene ablation of PS2 (unlike that of PS1) in mice does not result in a severe phenotype resembling that of Notch-ablated animals. To investigate the amyloidogenic function of PS2 more directly, we mutagenized a conserved aspartate at position 366 to alanine, because the corresponding residue of PS1 is known to be required for its amyloidogenic function. Cells expressing the PS2 D366A mutation exhibit significant deficits in proteolytic processing of beta-amyloid precursor protein indicating a defect in gamma-secretase activity. The reduced gamma-secretase activity results in the almost complete inhibition of Abeta and p3 production in cells stably expressing PS2 D366A, whereas cells overexpressing the wild-type PS2 cDNA produce robust levels of Abeta and p3. Using highly sensitive in vivo assays, we demonstrate that the PS2 D366A mutation not only blocks gamma-secretase activity but also inactivates PS2 activity in Notch signaling by inhibiting the proteolytic release of the cytoplasmic Notch1 domain. These data suggest that PS2 is functionally involved in Abeta production and Notch signaling by facilitating similar proteolytic cleavages.

Pubmed ID: 10497236 RIS Download

Mesh terms: Amyloid beta-Peptides | Animals | Animals, Genetically Modified | Cell Line | Humans | Hydrolysis | Membrane Proteins | Mice | Mice, Knockout | Mutation | Peptide Fragments | Presenilin-2 | Receptors, Notch | Signal Transduction

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.