• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Genetic alteration of phospholipase C beta3 expression modulates behavioral and cellular responses to mu opioids.

Morphine and other micro opioids regulate a number of intracellular signaling pathways, including the one mediated by phospholipase C (PLC). By studying PLC beta3-deficient mice, we have established a strong link between PLC and mu opioid-mediated responses at both the behavioral and cellular levels. Mice lacking PLC beta3, when compared with the wild type, exhibited up to a 10-fold decrease in the ED(50) value for morphine in producing antinociception. The reduced ED(50) value was unlikely a result of changes in opioid receptor number or affinity because no differences were found in whole-brain B(max) and K(d) values for mu, kappa, and delta opioid receptors between wild-type and PLC beta3-null mice. We also found that opioid regulation of voltage-sensitive Ca(2+) channels in primary sensory neurons (dorsal root ganglion) was different between the two genotypes. Consistent with the behavioral findings, the specific mu agonist [D-Ala(2),(Me)Phe(4),Gly(ol)(5)]enkephalin (DAMGO) induced a greater whole-cell current reduction in a greater proportion of neurons isolated from the PLC beta3-null mice than from the wild type. In addition, reconstitution of recombinant PLC protein back into PLC beta3-deficient dorsal root ganglion neurons reduced DAMGO responses to those of wild-type neurons. In neurons of both genotypes, activation of protein kinase C with phorbol esters markedly reduced DAMGO-mediated Ca(2+) current reduction. These data demonstrate that PLC beta3 constitutes a significant pathway involved in negative modulation of mu opioid responses, perhaps via protein kinase C, and suggests the possibility that differences in opioid sensitivity among individuals could be, in part, because of genetic factors.

Pubmed ID: 10468617

Authors

  • Xie W
  • Samoriski GM
  • McLaughlin JP
  • Romoser VA
  • Smrcka A
  • Hinkle PM
  • Bidlack JM
  • Gross RA
  • Jiang H
  • Wu D

Journal

Proceedings of the National Academy of Sciences of the United States of America

Publication Data

August 31, 1999

Associated Grants

  • Agency: NIDA NIH HHS, Id: DA00360
  • Agency: NIGMS NIH HHS, Id: GM53162
  • Agency: NIGMS NIH HHS, Id: GM54167

Mesh Terms

  • Animals
  • Brain
  • Calcium Channels
  • Cell Membrane
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
  • Enkephalins
  • Ganglia, Spinal
  • Gene Expression Regulation
  • Gene Expression Regulation, Enzymologic
  • Isoenzymes
  • Membrane Potentials
  • Mice
  • Mice, Knockout
  • Morphine
  • Neurons, Afferent
  • Pain
  • Phospholipase C beta
  • Receptors, Opioid, delta
  • Receptors, Opioid, kappa
  • Receptors, Opioid, mu
  • Type C Phospholipases