We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genetic alteration of phospholipase C beta3 expression modulates behavioral and cellular responses to mu opioids.

Morphine and other micro opioids regulate a number of intracellular signaling pathways, including the one mediated by phospholipase C (PLC). By studying PLC beta3-deficient mice, we have established a strong link between PLC and mu opioid-mediated responses at both the behavioral and cellular levels. Mice lacking PLC beta3, when compared with the wild type, exhibited up to a 10-fold decrease in the ED(50) value for morphine in producing antinociception. The reduced ED(50) value was unlikely a result of changes in opioid receptor number or affinity because no differences were found in whole-brain B(max) and K(d) values for mu, kappa, and delta opioid receptors between wild-type and PLC beta3-null mice. We also found that opioid regulation of voltage-sensitive Ca(2+) channels in primary sensory neurons (dorsal root ganglion) was different between the two genotypes. Consistent with the behavioral findings, the specific mu agonist [D-Ala(2),(Me)Phe(4),Gly(ol)(5)]enkephalin (DAMGO) induced a greater whole-cell current reduction in a greater proportion of neurons isolated from the PLC beta3-null mice than from the wild type. In addition, reconstitution of recombinant PLC protein back into PLC beta3-deficient dorsal root ganglion neurons reduced DAMGO responses to those of wild-type neurons. In neurons of both genotypes, activation of protein kinase C with phorbol esters markedly reduced DAMGO-mediated Ca(2+) current reduction. These data demonstrate that PLC beta3 constitutes a significant pathway involved in negative modulation of mu opioid responses, perhaps via protein kinase C, and suggests the possibility that differences in opioid sensitivity among individuals could be, in part, because of genetic factors.

Pubmed ID: 10468617 RIS Download

Mesh terms: Animals | Brain | Calcium Channels | Cell Membrane | Enkephalin, Ala(2)-MePhe(4)-Gly(5)- | Enkephalins | Ganglia, Spinal | Gene Expression Regulation | Gene Expression Regulation, Enzymologic | Isoenzymes | Membrane Potentials | Mice | Mice, Knockout | Morphine | Neurons, Afferent | Pain | Phospholipase C beta | Receptors, Opioid, delta | Receptors, Opioid, kappa | Receptors, Opioid, mu | Type C Phospholipases

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, Id: R01 GM053536
  • Agency: NIGMS NIH HHS, Id: GM54167
  • Agency: NIDA NIH HHS, Id: DA00360
  • Agency: NIDA NIH HHS, Id: T32 DA007232
  • Agency: NIDDK NIH HHS, Id: R01 DK019974
  • Agency: NIDA NIH HHS, Id: K05 DA000360
  • Agency: NIGMS NIH HHS, Id: GM53162

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.