Searching accross hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Sec1p binds to SNARE complexes and concentrates at sites of secretion.

Proteins of the Sec1 family have been shown to interact with target-membrane t-SNAREs that are homologous to the neuronal protein syntaxin. We demonstrate that yeast Sec1p coprecipitates not only the syntaxin homologue Ssop, but also the other two exocytic SNAREs (Sec9p and Sncp) in amounts and in proportions characteristic of SNARE complexes in yeast lysates. The interaction between Sec1p and Ssop is limited by the abundance of SNARE complexes present in sec mutants that are defective in either SNARE complex assembly or disassembly. Furthermore, the localization of green fluorescent protein (GFP)-tagged Sec1p coincides with sites of vesicle docking and fusion where SNARE complexes are believed to assemble and function. The proposal that SNARE complexes act as receptors for Sec1p is supported by the mislocalization of GFP-Sec1p in a mutant defective for SNARE complex assembly and by the robust localization of GFP-Sec1p in a mutant that fails to disassemble SNARE complexes. The results presented here place yeast Sec1p at the core of the exocytic fusion machinery, bound to SNARE complexes and localized to sites of secretion.

Pubmed ID: 10427089 RIS Download

Mesh terms: Adenosine Triphosphatases | Adenosine Triphosphate | Exocytosis | Fungal Proteins | GTP-Binding Proteins | Membrane Fusion | Membrane Proteins | Munc18 Proteins | Nerve Tissue Proteins | Precipitin Tests | Protein Binding | Qa-SNARE Proteins | Qc-SNARE Proteins | Recombinant Fusion Proteins | SNARE Proteins | Saccharomyces cerevisiae | Saccharomyces cerevisiae Proteins | Temperature | Vesicular Transport Proteins | rab GTP-Binding Proteins

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, Id: R37 GM035370
  • Agency: NIGMS NIH HHS, Id: F32GM17919-03
  • Agency: NIGMS NIH HHS, Id: GM19015
  • Agency: NCI NIH HHS, Id: P01 CA046128
  • Agency: NCI NIH HHS, Id: CA46128
  • Agency: NIGMS NIH HHS, Id: R01 GM035370
  • Agency: NIGMS NIH HHS, Id: F32 GM019015
  • Agency: NIGMS NIH HHS, Id: F32 GM017919

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Bio-Rad Laboratories

A commercial instrument and chemical vendor.

tool

View all literature mentions

NEURON

NEURON is a simulation environment for modeling individual neurons and networks of neurons. It provides tools for conveniently building, managing, and using models in a way that is numerically sound and computationally efficient. It is particularly well-suited to problems that are closely linked to experimental data, especially those that involve cells with complex anatomical and biophysical properties. NEURON has benefited from judicious revision and selective enhancement, guided by feedback from the growing number of neuroscientists who have used it to incorporate empirically-based modeling into their research strategies. NEURON's computational engine employs special algorithms that achieve high efficiency by exploiting the structure of the equations that describe neuronal properties. It has functions that are tailored for conveniently controlling simulations, and presenting the results of real neurophysiological problems graphically in ways that are quickly and intuitively grasped. Instead of forcing users to reformulate their conceptual models to fit the requirements of a general purpose simulator, NEURON is designed to let them deal directly with familiar neuroscience concepts. Consequently, users can think in terms of the biophysical properties of membrane and cytoplasm, the branched architecture of neurons, and the effects of synaptic communication between cells. * helps users focus on important biological issues rather than purely computational concerns * has a convenient user interface * has a user-extendable library of biophysical mechanisms * has many enhancements for efficient network modeling * offers customizable initialization and simulation flow control * is widely used in neuroscience research by experimentalists and theoreticians * is well-documented and actively supported * is free, open source, and runs on (almost) everything

tool

View all literature mentions

Cold Spring Harbor Laboratory

A non-profit, private research and education institution that performs molecular and genetic research used to generate methods for better diagnostics and treatments for cancer and neurological diseases. This lab has done specific research of cancer-causing genes and their respective signaling pathways. They have also researched mutations and structural variations of the human genome that could cause neurodevelopmental and neurodegenerative illnesses such as autism, schizophrenia, and Alzheimer's and Parkinson's diseases. This laboratory is also involved in plant genetics and quantitative biology.

tool

View all literature mentions