Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus.

Nature | Apr 29, 1999

http://www.ncbi.nlm.nih.gov/pubmed/10235265

In eukaryotes, the activation of mitotic cyclin-dependent kinases (CDKs) induces mitosis, and their inactivation causes cells to leave mitosis. In budding yeast, two redundant mechanisms induce the inactivation of mitotic CDKs. In one mechanism, a specialized ubiquitin-dependent proteolytic system (called the APC-dependent proteolysis machinery) degrades the mitotic (Clb) cyclin subunit. In the other, the kinase-inhibitor Sic1 binds to mitotic CDKs and inhibits their kinase activity. The highly conserved protein phosphatase Cdc14 promotes both Clb degradation and Sic1 accumulation. Cdc14 promotes SIC1 transcription and the stabilization of Sic1 protein by dephosphorylating Sicl and its transcription factor Swi5. Cdc14 activates the degradation of Clb cyclins by dephosphorylating the APC-specificity factor Cdh1. So how is Cdc14 regulated? Here we show that Cdc14 is sequestered in the nucleolus for most of the cell cycle. During nuclear division, Cdc14 is released from the nucleolus, allowing it to reach its targets. A highly conserved signalling cascade, critical for the exit from mitosis, is required for this movement of Cdc14 during anaphase. Furthermore, we have identified a negative regulator of Cdc14, Cfi1, that anchors Cdc14 in the nucleolus.

Pubmed ID: 10235265 RIS Download

Mesh terms: Amino Acid Sequence | Cell Cycle Proteins | Cell Nucleolus | Chromatids | Enzyme Activation | Enzyme Inhibitors | Mitosis | Molecular Sequence Data | Mutation | Nuclear Proteins | Phosphoprotein Phosphatases | Protein Tyrosine Phosphatases | Saccharomyces cerevisiae Proteins | Sequence Homology, Amino Acid | Signal Transduction | Yeasts

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.